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Particle Creation in the Oscillatory Phase of Inflaton

P. K. Suresh1

A thermal squeezed state representation of inflaton is constructed for a flat Friedmann–
Robertson–Walker (FRW) background metric and the phenomenon of particle creation
is examined during the oscillatory phase of inflaton, in the semiclassical theory of
gravity. An approximate solution to the semiclassical Einstein equation is obtained in
thermal squeezed state formalism perturbatively and is found obey the same power-
law expansion as that of classical Einstein equation. In addition to that the solution
shows oscillatory in nature except on a particular condition. It is also noted that, the
coherently oscillating nonclassical inflaton, in thermal squeezed vacuum state, thermal
squeezed state, and thermal coherent state, suffers particle production and the created
particles exhibit oscillatory behavior. The present study can account for the postinfla-
tion particle creation due to thermal and quantum effects of inflation in a flat FRW
universe.

KEY WORDS: particle creation; inflaton; thermal squeezed states; thermal coherent
states.

1. INTRODUCTION

According to the simplest version of the inflationary scenario, the universe in
the past expanded exponentially with time, while its energy density was dominated
by the effective potential energy density of a scalar field, called the inflaton. Sooner
or later, inflation terminated and the inflaton field started quasiperiodic motion with
slowly decreasing amplitude. The universe was empty of particles after inflation
and particles of various kinds created due to the quasiperiodic evolution of the
inflaton field. The universe became hot again due the oscillations and decay of the
created particles of various kinds. Form then on, it can be described by the hot big
bang theory.

The standard cosmology provides reliable and tested account of the history
of the universe from about 0.01 s after the big bang until today, some 15 billion
years later. Despite its success, the hot big bang model left many features of
the universe unexplained. The most important of these are horizon problem,
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singularity problem, flatness problem, homogeneity problem, structure formation
problem, monopole problem, and so on. All these problems are very difficult and
defy solution within the standard cosmology. Most of these problems have been
either completely resolved or considerably relaxed in the context of inflation-
ary scenario (Guth, 1981). At present there are different versions (Albrecht and
Steinhardt, 1982; Brandenberger, 1985; Linde, 1982) of the inflationary scenario.
The main feature of all these versions is known as the inflationary paradigm. In-
flationary cosmology is also widely accepted because of its success in explaining
cosmological observations (Liddle and Lyth, 2000).

Most of the inflationary scenarios are based on the classical gravity of the
Friedmann equation and the scalar field equation in the Friedmann–Robertson–
Walker (FRW) universe, assuming its validity even at the very early stage of the
universe. However, quantum effects of matter fields and quantum fluctuations are
expected to play a significant role in this regime, though quantum gravity effects
are still negligible. Therefore, the proper description of a cosmological model
can be studied in terms of the semiclassical gravity of the Friedmann equation
with quantized matter fields as the source of gravity. The semiclassical quantum
gravity seems to be a viable method throughout the whole nonequilibrium quantum
process from the preinflation period of hot plasma in thermal equilibrium to the
inflation period and finally to the matter-dominated period.

Recently, the study of quantum properties of inflaton has received much at-
tention in semiclassical theory of gravity and inflationary scenarios (Dongsuet al.,
1998; Kim and Page, 1999). In the new inflation scenario (Guth and Pi, 1995)
quantum effects of the inflaton were partially taken into account by using one-
loop effective potential and an initial thermal condition. In the stochastic inflation
scenario (Lindeet al., 1994) the inflaton was studied quantum mechanically by
dealing with the phase–space quantum distribution function and the probability
distribution (Habib, 1992). The aforementioned studies show that results obtained
in classical gravity are quite different from those in semiclassical gravity. Such
studies reveal that quantum effects and quantum phenomena play an important
role in inflation scenario and the related issues. Recently, it has been found that
nonclassical state formalisms are quite useful to deal with quantum effects in cos-
mology (Albrechtet al., 1994; Berger, 1981; Brandenbergeret al., 1992; Gasperini
and Giovanni, 1994; Grishchuk and Sidorov, 1993; Huet al., 1994; Kuo and Ford,
1993; Mataczet al., 1993), particularly squeezed states and coherent state formal-
ism of quantum optics (Schumaker, 1986).

The above mentioned squeezed states and coherent state formalisms are zero
temperature states. There exist a thermal counterparts of coherent and squeezed
states and are useful to deal with finite temperature effects and quantum effects.
From the cosmological point of view it would be more natural to consider the
temperature effects on the background of FRW metric. Therefore, this motivates
the study of thermal squeezed states and thermal coherent states in cosmology.
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The goal of the present paper is to study quantum and finite temperature effects
of minimally coupled massive inflaton in the FRW universe. Hence examined the
thermal and quantum particle creation, in the oscillatory phase, of the inflaton
in thermal coherent and thermal squeezed state formalisms, in the semiclassical
theory of gravity. For the present study we follow the unit systemc = G = h = 1.

2. THERMAL SQUEEZED STATES AND
THERMAL COHERENT STATES

The thermo field dynamic (Umezawa, 1993) formalism can be use to get
the thermal counterparts of coherent and squeezed states. The main feature of
thermo field dynamics is the thermal Bogoliubov transformation that maps the
theory from zero to finite temperature. One can construct a thermal vacuum|0(β)〉
annihilated by thermal annihilation operators and can express the average value
of any observableA as the expectation value in the thermal vacuum (Umezawa,
1993)

Z(β)−1tr[ρA] = 〈0(β)|A|0(β)〉, (1)

whereρ is the distribution function,β = 1
kT andk Boltzmann’s constant, andT the

temperature. In order to fulfill the requirement (1), the vacuum should belong to
the direct space between the original Fock space by an identical copy of it denoted
by a tilde. Therefore,

|0(β)〉 = e−i M |0, 0̃〉, M = −i θ (β)(a†ã† − aã), (2)

wherea, a† are the annihilation and creation operators in original Fock space and
ã, ã† are the same for the tilde space, and are obeying boson commutation relations
[a, a†] = [ã, ã†] = 1, the other combinations are zero.

The density matrix approach usually gives us a convenient method for incor-
porating finite temperature effects. Hence, various definitions of thermal coherent
states (tcs) can be summarized by giving its density matrix and it can be written
for the single mode case as (Ezawaet al., 1991)

ρtcs= D†(α)e−βωa†a D(α), (3)

whereα is a complex number specifying the coherent state,ω is the energy of the
mode, and

D(α) = exp(αa† − α∗a). (4)

The characteristic function for single mode thermal coherent state,Qtcs, is
defined by (Ezawaet al., 1991)

Qtcs(η, η∗) = exp[− f (β)|η|2+ η∗α − ηα∗], (5)
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whereη andη∗ are as independent variables and,

f (β) = 1

eβω − 1
. (6)

Similarly the density matrix for a single mode thermal squeezed states (tss)
is given by (Ezawaet al., 1991)

ρtss= D†(α)S†(ξ )e−βa†aS(ξ )D(α), (7)

where

S(ξ ) = exp[(ξa†
2 − ξ ∗a2)/2], ξ = reiϑ . (8)

Herer is the squeezing parameter andϑ is the squeezing angle.
The characteristic function of a single mode thermal squeezed state is given

by

Qtss(η, η∗) = exp

[
−|η|2

(
sinh2 r coth

βω

2
+ f (β)

)
− coshr sinhr

2
coth

βω

2
(e−iϕη2+ eiϕη∗2)− ηα∗ + η∗α

]
. (9)

The density matrix for a single mode thermal squeezed vacuum (tsv) is given by

ρtsv = S†(ξ )e−βa†aS(ξ ), (10)

and the characteristic function is

Qtsv(η, η∗) = exp

[
−|η|2

(
sinh2 r coth

βω

2
+ f (β)

)
− coshr sinhr

2
coth

βω

2
(e−iϕη2+ eiϕη∗2)

]
. (11)

Though the space is direct product between the original space and identical copy of
it, the observational quantities are the expectation values ofa, a†, a2, a†2 (Ezawa
et al., 1991) etc. These quantities can be computed in thermal coherent state,
thermal squeezed state, and thermal squeezed vacuum state formalisms by applying
their corresponding characteristic function in the following relations,

〈a〉 = ∂Q
∂η∗

∣∣∣
η= η∗ = 0

,
(12)

〈a†〉 = −∂Q
∂η

∣∣∣
η= η∗ = 0

.

Similarly the higher order expectation values ofa anda† can also be evaluated
using the same procedure of Eq. (12).
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3. INFLATON IN A FLAT FRW METRIC

Consider a flat Friedmann–Robertson–Walker spacetime with the line
element

ds2 = −dt2+ R2(t)(dx2+ dy2+ dz2), (13)

the metric is treated as an unquantized external field.
The minimally coupled inflaton with the gravity, for the metric (13), can be

described by the Lagrangian

L = 1

2
R3(ϕ̇2−m2ϕ2), (14)

where overdot represents a derivative with respect to time. The equation governing
the inflaton, for the metric (13), can be written as

ϕ̈ + 3
Ṙ

R
ϕ̇ +m2ϕ = 0. (15)

One can define the momentum conjugate toϕ as,π = ∂L
∂ϕ̇

. Thus, the Hamiltonian
of the inflaton is

H = π2

2R3
+ 1

2
R3m2ϕ2. (16)

Therefore, 0− 0 component of the energy–momentum tensor for the inflaton takes
the following form

T00 = R3

2
(ϕ̇2+m2ϕ2). (17)

Consider the minimally coupled inflaton as the source of gravity. Therefore, the
classical Einstein equation becomes(

Ṙ

R

)2

= 8π

3

T00

R3
, (18)

whereT00 is the energy density of the inflaton, given by (17). In the cosmological
context, the classical Einstein equation (18) means that the Hubble constant,H =
Ṙ
R, is determined by the energy density of the dynamically evolving inflaton as
described by (15).

4. THERMAL AND QUANTUM PARTICLE CREATION

Since there is no consistent quantum theory of gravity available, it would be
meaningful to consider the semiclassical gravity theory to study quantum effect
of matter field in a classical background metric. The semiclassical approach is
also useful to deal with problems in cosmology, where quantum gravity effects are
negligible. Oscillatory phase of inflaton is such a situation, where one can neglect
the quantum gravity effects. Therefore, the present study can be restricted in the
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frame work of semiclassical theory of gravity. In semiclassical theory the Einstein
equation can be written as

Gµv = 8π〈T̂µv〉, (19)

where the quantum field, represented by a scalar fieldφ, is governed by the time-
dependent Schr¨odinger equation

i
∂φ

∂t
= Ĥφφ. (20)

Consider quantum inflaton as the source, then the Friedmann equation, for the
metric (13), in the semiclassical theory, can be written as(

Ṙ

R

)2

= 8π

3

1

R3
〈Ĥϕ〉, (21)

where〈Ĥϕ〉 represent the expectation value of the Hamiltonian of the inflaton in
a quantum state under consideration.

The inflaton can be described by the time dependent harmonic oscillator,
with the Hamiltonian (16). To study, the semiclassical Friedmann equation, the
expectation value of the Hamiltonian (16) to be computed, in a quantum state
under consideration. Therefore (16) becomes

〈Ĥϕ〉 = 1

2R3
〈π̂2〉 + m2R3

2
〈ϕ̂2〉. (22)

The eigenstates of the Hamiltonian are the Fock states

a†(t)a(t)|n, ϕ, t〉 = n|n, ϕ, t〉, (23)

where

a(t) = ϕ∗(t)π̂ − R3ϕ̇∗(t)ϕ̂,
(24)

a†(t) = ϕ(t)π̂ − R3ϕ̇(t)ϕ̂.

As an alternative to then representation, consider the inflaton in thermal squeezed
state formalism. Therefore, the expectation value of the Hamiltonian (22) in ther-
mal squeezed state can be computed as follows.

From (9), (12), and (24), we get

〈π̂2〉 = −R6ϕ̇2

(
α2− eiϑ coshr sinhr coth

βω

2

)
− R6ϕ̇∗2

(
α∗2− e−iϑ coshr sinhr coth

βω

2

)
+ R6ϕ̇∗ϕ̇

(
2|α|2+ 2 sinh2 r coth

βω

2
+ 2 f (β)+ 1

)
, (25)
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and

〈ϕ̂2〉 = − ϕ2

(
α2− eiϑ coshr sinhr coth

βω

2

)
− ϕ∗2

(
α∗2− e−iϑ coshr sinhr coth

βω

2

)
+ ϕ∗ϕ

(
2|α|2+ 2 sinh2 r coth

βω

2
+ 2 f (β)+ 1

)
. (26)

Substituting (25) and (26) in (22), and the apply the result in (21), then the semi-
classical Friedmann equation becomes(

Ṙ

R

)2

= 4π

3

[
(ϕ̇∗ϕ̇ +m2ϕ∗ϕ)

(
2|α|2+ 2 sinh2 r coth

βω

2
+ 2 f (β)+ 1

)
− (ϕ̇2+m2ϕ2)

(
α2− eiϑ coshr sinhr coth

βω

2

)
− (ϕ̇∗2+m2ϕ∗2)

(
α∗2− e−iϑ coshr sinhr coth

βω

2

)]
, (27)

whereϕ andϕ∗ satisfy Eq. (15) and the Wronskian condition

R3(t)(ϕ̇∗(t)ϕ(t)− ϕ∗(t)ϕ̇(t)) = i . (28)

The above boundary condition fixes the normalization constants of the two inde-
pendent solutions.

To solve the self-consistent semiclassical Einstein equation (27), transform
the solution in the following form

ϕ(t) = 1

R
3
2

ψ(t), (29)

thereby obtaining

ψ̈(t)+
(

m3− 3

4

(
Ṙ(t)

R(t)

)2

− 3

2

R̈(t)

R(t)

)
ψ(t) = 0. (30)

Next, focus on the oscillatory phase of the inflaton after inflation. In the parameter
region satisfying the inequality

m2 >
3Ṙ2

4R2
+ 2R̈

2R
, (31)

the inflaton has an oscillatory solution of the form

ψ(t) = 1√
2σ (t)

exp

(
−i
∫
σ (t)dt

)
, (32)
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with

σ (t) =
√

m2− 3

4

(
Ṙ

R

)2

− 3

2

R̈

R
+ 3

4

(
σ̇ (t)

σ (t)

)2

− 1

2

σ̈ (t)

σ (t)
. (33)

By applying the transform solution (29) in (27), and also using the factα = ei δα,
we obtain

R(t) =
[

2π

3σ

1(
Ṙ
R

)2

[
1

4

((
Ṙ

R
+ σ̇
σ

)2

+ σ 2+m2

)

×
(

2|α|2+ 2 sinh2 r coth
βω

2
+ 2 f (β)+ 1

)

− 1

4

((
3

Ṙ

R
+ σ̇
σ

)2

− σ 2+m2

)

×
(

2α2 cos(2δ − 2σ t)− cos(ϑ − 2σ t) sinh(2r ) coth
βω

2

)
+ σ

(
3

Ṙ

R
+ σ̇
σ

)

×
(

2α2 sin(2δ − 2σ t)+ sin(ϑ − 2σ t) sinh(2r ) coth
βω

2

)]]1/3

. (34)

The next order approximation solution of the Eq. (34) can be obtained by using
the following approximation ansatzs

σ0(t) = m, (35)

and

R0(t) = R0t
2
3 . (36)

Thus we get

R1(t) =
[
3πmt2

[(
1+ 1

2m2t2

)(
2|α|2+ 2 sinh2 r coth

βω

2
+ 2 f (β)+ 1

)
− 1

2m2t2

(
2α2 cos(2δ − 2mt)− cos(ϑ − 2mt) sinh(2r ) coth

βω

2

)

+ 2

mt2

(
2α2 sin(2δ − 2mt)− sin(ϑ − 2mt) sinh(2r ) coth

βω

2

)]]1/3

.

(37)
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When 2δ = ϑ = 2mt, then (37) becomes

R1(t) =
[
3πmt2

[(
1+ 1

2m2t2

)(
2|α|2+ 2 sinh2 r coth

βω

2
+ 2 f (β)+ 1

)

− 1

2m2t2

(
2α2− sinh(2r ) coth

βω

2

)]]1/3

. (38)

Next, consider the particle production of the inflaton, in thermal squeezed states
formalisms in semiclassical theory of gravity. First, consider the Fock space which
has a one parameter dependence on the cosmological timet . The number of par-
ticles at a later timet produced from the vacuum at the initial timet0 is given
by

N0(t, t0) = 〈0,ϕ, t0|N̂(t)|0,ϕ, t0〉, (39)

here, N̂(t) = a†a and its expectation value can be calculated by using (24).
Therefore,

〈N̂(t)〉 = R6ϕ̇ϕ̇∗〈ϕ̂2〉 + ϕϕ∗〈π̂2〉 − R3ϕϕ̇∗〈π̂ ϕ̂〉 − R3ϕ̇ϕ∗〈ϕ̂π̂〉. (40)

Again using (24) and (40), we get

N0(t, t0) = R6|ϕ(t)ϕ̇(t0)− ϕ̇(t)ϕ(t0)|2. (41)

Using (35), (36), and (40), the number of particles created at a later timet from
the vacuum state at the initial timet0 in the limit mt0, mt > 1 can be computed and
is given (Kim and Page, 1999) by

N0(t, t0) = 1

4σ (t)σ (t0)

(
R(t)

R(t0)

)3

×
[

1

4

(
3

Ṙ(t)

R(t)
− 3

Ṙ(t0)

R(t0)
− σ̇ (t)

σ (t)
+ σ̇ (t0)

σ (t0)

)2

+ (σ (t)− σ (t0))2

]

' (t − t0)2

4m2t4
0

. (42)

To compute the particle creation in thermal squeezed state, the expectation values
of the〈π̂2〉, 〈ϕ̂2〉, 〈π̂ ϕ̂〉, and〈ϕ̂π̂〉 in the thermal squeezed state are required. Thus
using Eqs. (9), (12), (24), and (40), we get

Ntss(t, t0) = 1

16

1

σ (t)

1

σ (t0)

(
R(t)

R(t0)

)3

×
[[(

3
Ṙ(t)

R(t)
− 3

Ṙ(t0)

R(t0)
+ σ̇ (t)

σ (t)
− σ̇ (t0)

σ (t0)

)2

+ σ (t)2− σ (t0)2

]
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×
(

2|α|2+ 2 sinh2 r coth
βω

2
+ 2 f (β)+ 1

)

−
(

3
Ṙ(t)

R(t)
− 3

Ṙ(t0)

R(t0)
+ σ̇ (t)

σ (t)
− σ̇ (t0)

σ (t0)

)2

×
[(
α2− eiϑ coshr sinhr coth

βω

2

)
e2iσ (t0)t0

+
(
α∗2− e−iϑ coshr sinhr coth

βω

2

)
e2iσ (t0)t0

]]
. (43)

Which is the number of particles produced in thermal squeezed state, at a later
time t from the initial timet0.

By takingα = ei δα, and using (35) and (36), Eq. (43) becomes

Ntss' N0(t, t0)

[
2|α|2+ 2 sinh2 r coth

βω

2
+ 2 f (β)+ 1

− 2α2 cos(2δ − 2mt0)+ cos(ϑ − 2mt0) sinh(2r ) coth
βω

2

]
, (44)

whereN0(t, t0) is given by (42).
Whenr = 0, Eq. (44) leads to

Ntcs' N0(t, t0)[2|α|2+ 2 f (β)+ 1− 2α2 cos(2δ − 2mt0)]. (45)

Which is particle creation in thermal coherent state. The same result can be also
obtained by using Eqs. (5), (12), (24), (35), (36), and (40).

Whenα = 0, Eq. (44) becomes

Ntsv ' N0(t, t0)

[
2 sinh2 r coth

βω

2
+ 2 f (β)+ 1

+ cos(ϑ − 2mt0) sinh(2r ) coth
βω

2

]
. (46)

Equation (46) can be also obtained by using Eqs. (11), (12), (24), (35), (36), and
(40), and is the particle production due thermal squeezed vacuum state.

When 2δ = 2mt0 andϑ = 2mt0, Eqs. (44), (45), and (46), respectively become

Ntss' N0(t, t0)

[
2|α|2+ 2 sinh2 r coth

βω

2
+ 2 f (β)+ 1

− 2α2+ sinh(2r ) coth
βω

2

]
, (47)

Ntcs' N0(t, t0)[2|α|2+ 2 f (β)+ 1− 2α2], (48)
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and

Ntsv ' N0(t, t0)

[
2 sinh2 r + 2 f (β)+ 1 sinh(2r ) coth

βω

2

]
. (49)

Whenr = α = 0, then Eq. (44) takes the following form

Nth ' N0(t, t0)[2 f (β)+ 1]. (50)

Which is the particle creation due to purely thermal effects.

5. CONCLUSIONS

In this paper, we studied particle production of the coherently oscillating
inflaton, after the inflation, in thermal coherent states and thermal squeezed states
formalisms, in the frame work of semiclassical theory of gravity. The number of
particles at a later timet , produced from the thermal coherent state, at the initial
timet0, in the limitmt0,mt > 1 calculated. It shows, the particle production depends
on the coherent state parameter and finite temperature effects. The particle creation
in thermal squeezed vacuum state in the limitmt0 > mt > 1 is also computed, it is
found that the particle production depending on the associated squeezing parameter
and temperature. Similarly the number of particles produced in thermal squeezed
state also computed. It is observed that, whenr = 0, the result agree with the
number of particles produced in the thermal coherent state and whenα = 0, the
result is equal to the number of particles created in thermal squeezed vacuum state.

The approximate leading solution obtained for the Einstein equation, in the
thermal squeezed states shows oscillatory behavior except when the condition,
2δ = ϑ = 2mt, satisfies. Though both classical and quantum inflaton in the oscil-
latory phase of the inflaton lead the same power-law expansion, the correction to the
expansion does not show any oscillatory behavior in semiclassical gravity in con-
trast to the oscillatory behavior seen in classical gravity only when 2δ = ϑ = 2mt.
It is also noted that, the coherently oscillating inflaton, in thermal squeezed vac-
uum, thermal squeezed, and thermal coherent states representation, suffer particle
creation and created particle exhibit oscillations. The oscillation of the created
particles is necessary to preheat the universe to hot again after the inflation. The
present study can account for the postinflation particle creation due to thermal
and quantum effects of inflaton in a flat FRW universe. Since the created particles
oscillate, we hope that this kind of study can throw light on preheating issues of
postinflationary scenario.
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